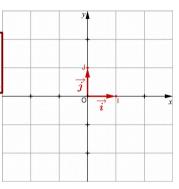
I – Repère orthonormé du plan

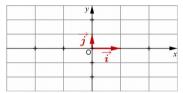
Un repère (O; I; J) est dit **orthonormé** lorsque :

- ① les axes des abscisses et des ordonnées ont la même unité de longueur (OI = OJ);
 - ② ces axes sont perpendiculaires : $(OI) \perp (OJ)$

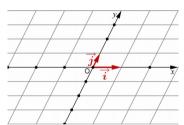


Remarques:

- ① En posant $\vec{i} = \overrightarrow{OI}$ et $\vec{j} = \overrightarrow{OJ}$, ce repère est aussi désigné par le triplet $(O; \vec{i}; \vec{j})$.
 - ② On dit que $(\vec{i};\vec{j})$ est une base de vecteurs.
 - 3 Il existe d'autres types de repères :
- Le repère orthogonal dont les axes sont perpendiculaires mais n'ont pas la même unité.



• Le repère quelconque dont les axes ne sont pas perpendiculaires.



II - Coordonnées d'un vecteur dans un repère

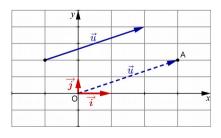
 $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ est un vecteur quelconque dans un repère $(O; \vec{i}; \vec{j})$ du plan.

On nomme A l'unique point de ce repère tel que $\overrightarrow{OA} = \vec{u}$.

Alors les **coordonnées** du point A sont celles du vecteur \vec{u} : A(x;y)

<u>Exemple – Méthode</u>:

- ① Soit \vec{u} le vecteur tel que $\vec{u} = 3\vec{i} + 2\vec{j}$. Alors les coordonnées de \vec{u} dans le repère $(O; \vec{i}; \vec{j})$ sont $\vec{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.
- ② On place le point A tel que $\overline{OA} = \vec{u}$. Les coordonnées de A sont ainsi A(3;2).



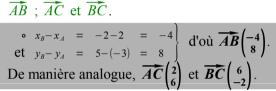
III – Coordonnées d'un vecteur \overrightarrow{AB}

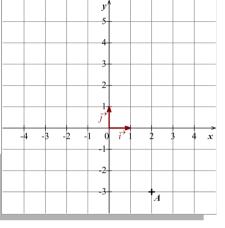
Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points dans un repère $(O; \vec{i}; \vec{j})$ du plan. Le **vecteur** \overrightarrow{AB} a pour coordonnées $\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Exemple:

Le point A est placé dans le repère $(O; \vec{i}; \vec{j})$.

- **①** Compléter les coordonnées de A: $A(\dots, \dots)$
- ② Placer les points B(-2;5) et C(4;3).
- 3 Calculer les coordonnées des vecteurs





Propriété :

Dans un repère $(O; \vec{i}; \vec{j})$, deux vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont égaux si et seulement si ils ont les mêmes coordonnées : $\vec{u} = \vec{v}$ équivaut à $\begin{cases} x = x' \\ y = y' \end{cases}$

Exemples:

- **①** Dans un repère $(O; \vec{i}; \vec{j})$, on considère les points A(2; -3) et B(-2; 5). Montrer que J(0; 1) est le milieu du segment [AB].
 - **②** Le point C a pour coordonnées C(4;3).

Déterminer les coordonnées du point D tel que ABCD soit un parallélogramme.

Puisque $\overrightarrow{AJ} = \overrightarrow{JB}$, on en déduit que J est le milieu de [AB].

② ABCD est un parallélogramme lorsque $\overrightarrow{AB} = \overrightarrow{DC}$.

Or $\overrightarrow{AB} \begin{pmatrix} -4 \\ 8 \end{pmatrix}$ et $\overrightarrow{DC} \begin{pmatrix} 4 - x_D \\ 3 - y_D \end{pmatrix}$. On résout alors les équations :

$$-4 = 4 - x_D$$
 et $8 = 3 - y_D$

$$x_D = 4+4$$
 et $y_D = 3-8$
 $x_D = 8$ et $y_D = -5$ Donc $D(8;-5)$

IV - Coordonnées du milieu d'un segment

Les points $A(x_A; y_A)$ et $B(x_B; y_B)$ sont deux points d'un repère $(O; \vec{i}; \vec{j})$. Le point M, milieu de [AB], a pour coordonnées $x_M = \frac{x_A + x_B}{2}$ et $y_M = \frac{y_A + y_B}{2}$.

Exemples:

① Dans un repère $(O; \vec{i}; \vec{j})$, on considère les points A(2; -3) et B(-2; 5). Déterminer les coordonnées du milieu de [AB].

2 Le point C a pour coordonnées C(4;3) et on appelle E le symétrique de C par rapport à J(0;1). Déterminer les coordonnées de E.

 \mathfrak{D} On appelle K le milieu de [AB]. Alors

$$x_K = \frac{x_A + x_B}{2} = \frac{2 + (-2)}{2} = 0$$
 et $y_K = \frac{y_A + y_B}{2} = \frac{-3 + 5}{2} = 1$ d'où $K(0;1)$

$$x_J = \frac{x_c + x_E}{2}$$
 $y_J = \frac{y_c + y_E}{2}$
 $0 = \frac{4 + x_E}{2}$ et $1 = \frac{3 + y_E}{2}$ d'où $E(-4;-1)$
 $0 = 4 + x_E$ $2 \times 1 = 3 + y_E$

V - Longueur d'un segment en repère orthonormé

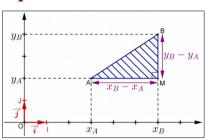
 $A(x_A; y_A)$ et $B(x_B; y_B)$ sont deux points dans un **repère orthonormé** $(O; \vec{i}; \vec{j})$. On désigne par M le point de coordonnées $M(x_B; y_A)$.

 $\left(O;\vec{i};\vec{j}\right)$ étant orthonormé, on a $\left\{ egin{array}{l} (AM) \ /\!/ \ (OI) \\ (BM) \ /\!/ \ (OJ) \end{array} \right)$.

Le triangle ABM est ainsi rectangle en M. D'après le théorème de Pythagore :

$$AB^2 = AM^2 + MB^2$$

= $(x_B - x_A)^2 + (y_B - y_A)^2$



Propriété :

Dans un **repère orthonormé** $(O; \vec{i}; \vec{j})$, la **longueur** du segment [AB] peut être calculée de trois manières :

Exemple:

Dans un repère $(O; \vec{i}; \vec{j})$, on considère A(2; -3); B(-2; 5) et C(4; 3). Démontrer que ABC est un triangle rectangle isocèle.

$$\circ \overrightarrow{AB} {\begin{pmatrix} -4 \\ 8 \end{pmatrix}}$$
 donc $AB^2 = (-4)^2 + 8^2 = 80$

$$\circ \overrightarrow{AC} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 donc $AC^2 = 2^2 + 6^2 = 40$

$$\circ \overrightarrow{AB} \begin{pmatrix} -4 \\ 8 \end{pmatrix}$$
 donc $AB^2 = (-4)^2 + 8^2 = 80$
 $\circ \overrightarrow{AC} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ donc $AC^2 = 2^2 + 6^2 = 40$
 $\circ \overrightarrow{BC} \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ donc $BC^2 = 6^2 + (-2)^2 = 40$

Puisque $AC^2 = BC^2$, on en déduit que ABC est un triangle isocèle en C.

De plus,
$$AC^2 + BC^2 = AB^2$$
.

D'après la réciproque du théorème de Pythagore, ABC est rectangle en C.